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Ai 
The rate equations for a three-step competitive consecutive second-order reaction of the type A + B > C + E, A + 

A2 A3 pt 
C — > D + E, A + D — > • F + E has been solved in terms of a variable X where X = I AAt. When A0 = 2B0, the solu-

J O 
tion is A = de "='>• + G2e **>> + Gse *sX where Gi, G2 and G3 are constants involving various combinations of Ai, A2, A3 and B0. 
Taylor's theorem was used to expand the function A about the first approximations of Ai, A2 and A3 {i.e., 0Aj, 0A2 and 0A3). 
If all higher order partials are neglected, then the equation in A becomes; A = /(0Ai, 0A2,

 0A3) + ^r- ! AAi + -^j- i AA2 + 
OtZi io O K 2 IO 

;Hr! A A3. The problem of evaluating AAi, AA2 and AA3 was accomplished bv a least squares solution utilizing all experi-
OK3 IO 

mental time-concentration data. An iterative procedure was developed for carrying out the operations on the I.B.M. 704 
electronic computer. On multiplying the equation for A by e l l \ differentiating the resulting equation and repeating the 
process using e*=̂  and e*«x successively, a third order differential equation in A and X was obtained which, after several 
successive integrations, leads to : A — Au + (Ai + A2 + A3M* + (Ai A3 + A2A3 + AiA2M** + AiA2A3;!*** = (VzAiA2 + 
AiA3 +

 3AA2A3)X
2B0 + (2Ai + 3A2 + 3A3)XS0 where A* = P ^ d X , A** = f*A*d\, A*** = f X ^ * * d \ . Taylor's theorem 

was used to expand this function of A about first approximations of Ai, A2 and A3 and an iterative procedure was developed 
to solve for AAi, AA2 and AA3 utilizing all experimental time-concentration data. 

Introduction reaction vary as the result of changing the solvent 
Recently,3 the kinetics of three-step competitive- composition. Therefore, it becomes necessary 

consecutive second-order reactions was investi- f o r u s t o reconsider the problem and see whether a 
gated mathematically in terms of general variables m o r e practical solution can be obtained, 
which in principle would apply to any reaction of Mathematical Analysis 
that_ kinetic type. The resulting analysis was The reactions to be considered are 
applied to the alkaline hydrolysis of l,3,5-tri-(4- k 
carbomethoxyphenyl)-benzene which, because of A + B —> C + F 
its size and corresponding absence of interaction A2 
between the carbomethoxy groups, led to the A + C —> n + F 
result that the rate constants are in the statistical 
ratio k]_:k2:kd = 3:2:1. However, the above pro­
cedure becomes too involved to be practical 
when there is no criterion for determining before­
hand what relationship, if any, exists between 
ki and kz for a particular reaction. This is the 
situation which exists when interaction between 
groups does occur or when the k's for a given 

(1) Abstracted from a thesis submitted by Jay A. Blauer to the 
Graduate School of the University of Maryland in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy. 

(2) Presented in part at the New York City Meeting of the American 
Chemical Society, September, 1960. 

(3) (a) W. J. Svirbely, / . Am. Chem. Soc, 81, 255 (1959); (b) 
W. J. Svirbely and H. E. Weisberg, ibid., 81, 257 (1959). 
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A3 
A + D >- E + F 

The pertinent rate equations for the above steps 
of the molar concentrations A, B, C and D are 

^ j - -ktAB - hAC - A3 

f . -M, 
^ = hAB - hAC 
at 

^- = A2.4C - k,AD 
at 

f - M» 

AD 

in terms 

(D 

(2) 

(3) 

(4) 

(5) 
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Let us define a new variable, X, so that 

X = T * Adt 

it follows then that 

dX = ^ d / 

(6) 

(7) 

On substituting equation 7 into equations 1 through 5, we 
obtain equations 8, 9, 10, 11 and 12. 

-kiB - hC - hD 
dX 

dB 
dX 

AC 
dX 

cLD 

dX 

^f = -k*B 

kiB — kiC 

= hC - hD 

Tx = k'D 

(8) 

(9) 

(10) 

( H ) 

(12) 

Equations 9, 10, 11 and 8 are integrated in that order. 
Constants of integration are evaluated in each appropriate 
case from the boundary conditions, which are: X = C = D 
= 0, A = Ao, and B = Bo a t t = 0. If the initial concen­
trations of species A and B are adjusted so that Ao — 3Ba, 
then one obtains 

A 
B0 - [ • 3 + 

2*i 

(k2 - h) 

r 2*' + 
+ 

klki 
{h - *,)(ft, - *i)J 

- * l X _ 

klkz 

- f c ) J (ki — h)(k3 

kiki 
(fa - h){h 

e-*2\ + 

h). 
«-*»>• (13) 

While we now have a solution for A in terms of the rate con­
stants , it is in an impossible form for the direct evaluation of 
the rate constants. Ultimately, three different procedures 
were developed (two of which are described). 

Method 1.—On rewriting equation 13 for simplification 
only, equation 14 is obtained 

5 = (Sie-*ix + <?2«-*«x + G,e-*A (14) 

The definitions of 5 , Gu G2 and G3 are obvious on reference to 
equation 13. If we let °fa, °fa and °fa be a set of initial esti­
mates of the actual rate constants fa, k2 and fa, equation 13 
may be expanded about these initial estimates via a Taylor's 
series expansion to give 

+ 5sl.<fc 
OK2 IO 

&5 
oh\ (fa - °fa) + H (15) 

5|o is the value of A/B0 calculated via equation 13 when 
°fa, "ki and °fa are substituted for the actual rate constants 
fa, faandfa. d5/dfa|o, dS/dfa |oand dS/dfa|o are the partial 
derivatives of A/B0 with respect to the three rate constants. 
These partial derivatives are evaluated from equation 13 
when the rate constants ki, fa and fa are replaced by the esti­
mates °fa, °fa and °fa. H represents all higher order partial 
derivatives. On neglecting H and replacing (ki — °fa), 
(k — "ki) and (fa — °fa) by Afa, Afa and Afa, equation 15 be­
comes 

*-*•-£!. ^ + M2 
Ak2 dfa 

In the evaluation of dS/dki\0, 
with respect to fa yields 

S - ( £ - « ) - + 
/&GA 
\bkj 

+ as!. ^ (16) 

differentiation of equation 14 

-*A + (pi) «-*.x 
,a^y 

(17) 

On differentiating the definitions of Gi, Gi and Gz, one ob­
tains 

dGi _ [~fa(fa - fa)2 + fefa(fa + fa - 2fa)~ 

dfa L (fa - W2(*» - h¥ 
(18) 

dG _ r kijki - 2*,) I 
d f a |_ ( fe - fa)2(fa - fa)J 

d_G, 

a*: 1 L(fa -
kiki 

fa)2(fa - h). ] 

(19) 

(20) 

The value of dSi/dfalo for each experimental value of A is 
determined from equation 17 on using the corresponding 
experimentally determined value of X and the outstanding 
estimates °fa, °fa and °fa of the rate constants fa, ki and fa. 

Similarly one obtains equations for evaluating r-r- and 
VKi 0 

d 5 I 
dfa ID' 

The problem now becomes one of the evaluation of Ak1, 
Afa and Ak,. Once these values have been obtained, the 
first estimates °fa, °fa and "ki may be corrected for the error 
terms and the process repeated with new estimates of fa, fa 
and fa. As the process is repeated the Aki terms will be­
come increasingly smaller. In the evaluation of equation 
16, we are solving for the three unknowns Afa, Afa and Ak3. 
Therefore, we need a t least three simultaneous equations, 
i.e., three different sets of values of A and X. The values of 
X are obtained from the graphical integration of an A vs. t 
plot. Actually a run may provide as many as 15 experi­
mental points, i.e., 15 sets of values of A and X. The prob­
lem therefore becomes one of using all fifteen equations in 
the total solution for Afa, Ak2 and Afa. 

The solution of equation 16 for the correction terms is 
accomplished by the method of least squares using all fifteen 
equations. For simplification, we make the following defi­
nitions 

/ 
Xi = 

X2 = 

X3 

(21) 

(22) 

(23) 

(24) 

5 - S|, 
a_5i 
dfa Io 
3 5 1 
dfa !o 
uS ' 
dfa o 

On substituting these definitions into equation 16, we obtain 

J = XiAk1 + X2Ak2 + X3Ak3 (25) 

The system of determinants arising from the solution of 
equation 25 is 

SXi2 SXiX2 -LXiX3 
2.,Y^-Ai SAfc 2X2.A3 

LJXi 
LJX2 
LJX3 

(26) 

The iterative procedure described above was programmed 
for the use of an IBM 704 electronic computer. 

Reference to equation 13 shows that if any two of the 
three rate constants are identical then equation 13 will fail 
to describe the data since two of the coefficients of the ex­
ponentials become indeterminate. As a result, the iterative 
procedure just described will fail. Such situations actually 
existed in some of our experimental work on the alkaline 
hydrolysis of 1,3,5-tricarbomethoxybenzene in low dielectric 
media. Accordingly, another procedure is required. This 
new procedure is described in method #2. 

Method 2.—Start with equation 13 and for simplification 
write it as 

A = Gi*<r4'x + Gj *«-*»* + G,*e-k>* (27) 

In equation 27 we have redefined Gi5o, G2Bo and G3Ba as 
Gi*, G2* and G3*, respectively. 

Upon multiplying equation 27 by ek^ and then differen­
tiating the resulting equation with respect to X, we obtain 
AA 
~ + kiA = G2*(*i - ki)e~** + G3*(ki - k3)e~** (28) 
dX 

Two repetitions of the above process of multiplication and 
subsequent differentiation using, however, ek^ and e*lX 

successively as multipliers leads to equation 29, namely 

gr+(*. + fa + ft,)^ + 
d A 

(kik2 + kiki + k2kz) ^ + hhk3A = 0 (29) 
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For simplification we write equation 29 as 

d'A , , d*A . T dA . T . n .„„. 
•dT'+JldT'+JidT+JtA-° m 

On multiplying equation 30 by dX and then integrating 
between limits, we obtain 

*x d*A 
dX2 

** d^ 
Jifo dx 

The reduction of equation 31 leads to 

dX + 

d x + / a / ; ^dX = 0 (31) 

d'A . T dA 
dx2 + Jl dx 

JiA + J1 i: AdX = 

d 2 ^ I , T d-4 I 
dX2 |o dX Ig 

The complete solution of equation 32 requires an evalua-
dM I dA I 

tion of the limits -77- and -jr . If the kinetic run is de-
0X2 Io dX !0 

signed so that at X = O; C = I ) = O and B = B0; then a 
X = O, equation 8 reduces to 

d.4 
dX 

-BiB1, (33) 

The differentiation of equation 8 with respect to X and the 
substitution of equations 9, 10 and 11 into the resulting 
equation leads to equation 34 when X = O. 

=.£ = (*i« - BiB2)S0 (34) 
dA Io 

On the substitution of the limits defined by equations 33 
and 34 into equation 32, one obtains an equation which in 
turn can be integrated. The process is repeated once more 
and equation (35) is obtained. 

A - A0 + J1A* + JiA** + JSA*** = 
JJ2 X2 + J,\ (35) 

where 

A* K Ad\\ A* f* A*d\; A*** = fX 

Jo Jo A**d\ 

Ji = BiB2S0 -f" 2hk%B0 -|- 3B2B3S0 

J6 = 2kiB0 + Sk2B0 + ZhB0 

Although equation 35 involves four graphical integra­
tions, it does have an advantage over equation 13. It will 
not break down if any two rate constants are equal. Equa­
tion 35 offers a means by which the rate constants may be 
evaluated by a method of least squares without the use of an 
iterative procedure. However, such a procedure is possible 
only with the aid of an electronic computer. Since we 
wished to use a method adaptable to a desk calculator, we 
developed a satisfactory solution for equation 35 through use. 
of an iterative procedure. 

For simplification, equation 35 is rewritten as equation 36, 
namely 

5 = J1X1 + /2X2 + JsX3 - ^ X t - J6X5 (36) 

where 

S = A0 -- A; X1 = A*; 
A**; 

X2 = 
X3 = **; X4 = X2; X5 = X 

Equation 36 may be expanded about first estimates of the 
three rate constants by means of Taylor's theorem. The 
starting equation is thus equation 37, namely 

S-SU = 
bS\ 
bh 11 Ak1 + 

bS\ 
bh\ 

. , , SSl A, 
AB2 + 3-7- Ak3 Ok3 Io 

(37) 

5 |o is the value of 5 evaluated by substituting values of X1, 
X2, X3, Xt, X6 and the estimates 0Bi, 0B2 and "h into equa-
t . „„ bS\ i)S\ , bS\ .. . , OS OS , 
tion 36. r r , r-j- and =-,- are the values of i r , ^7- and 

OBi |o Oh Io Ok3 :o 0*1 Oh 
r-r evaluated from equation 36 using the estimates "h, 0B2, Ok3 0B3 in place of the actual rate constants. Ak1, Ah and 
Ak3 are the correction terms to be added to the estimates 
0Ai, "h and "h to obtain an improved set of estimates. AU 

higher order partials are neglected. The solution is a three-
dimensional iteration. The solution of equation 37 is by the 
method of least squares. The partial derivatives must be 
evaluated for each datum point and have the following defi­
nitions (only C7- is given, the other two are obtained in a 

Ok1 Io 
similar fashion) 
5 5 I _ bJ\ 0J21 v , 0J31 
OBi 0 Ok1 Io OKi [0 OBi ! 

I d J 1 I 

X3 -

V 5 ^ 6 I V 
2 Ok1 Io Ok1 Io 

(37) 

T , .. . . . bS\ bS\ , bS\ , . , 
Three equations involving ^-r- , 7-7- and : r have fif-

0«i Io 0k% Io Ok3 Io 
bJi\ 

teen constants of the form -^r 1 
OBj 1O 

evaluated. These constants are defined as 

These constants must be 

bJi I 
OBi |o 

OJ2 

bh Io 

0 / 3 
OBi '0 

bJfl 
bh Io 

bJj\ 
bh Io 

For 

= 1.0000 

= 0B2 + "h 

= "Mh 

d / i l 
bh Io 

bJi\ 
bh So 

^ i = °B 
bh Io 

= (°fe-f 20B3)S0 g 

= 2B0 bh 0 

= 1.0000 

"h + "h 

h Oh1O 

bJi\ 
bh Io 

bJ2\ 

bk3 '0 

= 0Bi0B2 

= (0Bl + 3"B3)S0 

Io 
bJj\ 
OB3Io 

= 3S0 

= (2»Bl 

GJ1 

bh 

= 1.0000 

0Bl + 0B2 

(38) 

•f 30B2)S0 

I = 3B„ 
Io 

simplification we made the following definitions 

R1 = 

R2 = 

R3 = 

H = 

bS\ 
bki |o 

_&5! 
OB2I0 

d 5 | 
bh 0 

S - 50 

(39) 

(40) 

(41) 

(42) 

Equation 37 now becomes 

H = R1Ak1 + R2Ah + R3Ak3 (43) 
The system of determinants arising from the solution of 

equation 43 is 

2HRi \ SR1
2 SR1R2 SR1R3 

SHR2I = XR2R1 SR2
2 SR2R3 (44) 

SHR3I SR3R1 SR3R2 SR3* 

Discussion 
The application of both methods to the alkaline 

hydrolysis of 1,3,5-tricarbomethoxybenzene is 
given in another paper. However, it is appropriate 
to show in this paper the validity of the analysis 
leading to equation 13 and the subsequent testing 
of the programming developed for Method 1. 

In the special case where the relationship be­
tween the three rate constants is purely statistical, 
i.e., in which ki = 3/2 k% = 3ka, the rate equation3 

reduces to 
Av — A- _ h , _ u 4 /4gs 

AA0 
\ l = h t 

On solving equation 45 for A, one obtains 

A = 1 + hA at 

A0dt 1 

(46) 

+ k3A0t 
In (1 + A0k3t) (47) 

I t follows t h a t 

r*«- Pr 
Jo Jo l 

Through use of equation 6, equation 47 becomes 
X = i In (1 + k3A0t) (48) 

B3 
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A combination of equations 46 and 48 leads to 
eq.49 

k3\ = In ^0 (49) 

On assigning values to the constants A0 and kz, 
we may arbitrarily generate a test set of A values 
for various times / through use of equation 46. 
This test set of A values can be used to generate 
a test set of X values through use of equation 49. 
Both sets of test values are independent of any 
equations derived in this paper and apply to the 
situation where the rate constants are in the ratio 
ofh-.ki-.h = 3:2:1. 

On assigning a value of 6.51 to kz and 0.03000 
to Ao, values of X and A were generated and are 
listed in Table I. Also listed in Table I, column 3, 
are the values of A later calculated using the values 
of k\, ki and kz generated by the iterative procedure. 
The initial estimates of the three rate constants and 
the values given by the iterative procedure are 
summarized below Table I. The iteration was 
stopped when A&i became smaller than 1% of 
the outstanding value of k\. Three cycles through 
the iterative procedure were required in this test 
case. Close estimates of the rate constants were 
chosen as a measure of economy. The calculations 
were done by an IBM-704 electronic computer. 

In the application to experimental data, initial 
estimates of k\ were found by plotting A vs. X and 
estimating the slope at X = 0 in accordance with 
the equation 33. If kz is much smaller than both 
ki and ki, equation 14 reduces to equation 50 for 
large values of X 

Hm A/B0 = G3e-*»* (50) 
X—*•«> 

The logarithmic form of equation 50 is 

x!z( logl) = log Gs" rikx (51) 

The initial estimates of kz were found by plotting 
log A vs.\ and estimating the slope at large values 
of X. The initial estimates of &2 were found by 

Introduction 
A recent3 study of the alkaline hydrolysis of 

l,3,5-tri-(4-carbomethoxyphenyl)-benzene showed 
(1) Abstracted from a thesis submitted by Jay A. Blauer to the 

Graduate School of the University of Maryland in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy. 

TABLE I 

F I T OP THE T E S T DATA AS CALCULATED BY THE MACHINE 

ITERATION 
A , 

mole m i n . / l . 

0.01437 
.03909 
.06226 
.08034 
.09959 
.11689 
.12590 
.15239 
.20914 
.26716 
.33698 

ki 

h 
k-2 

h 

A , 
mole/1 . 

0.02733 
.02325 
.01999 
.01777 
.01567 
.01400 
.01320 
.01111 
.007672 
.005256 
.003333 

Actual value 
19.53 
13.02 
6.51 

Acalcd, 
mole /1 . 

0.02732 
.02325 
.01999 
.01777 
.01567 
.01400 
.01320 
.01111 
.007671 
.005256 
.003335 

Initial estimate 
20.0 
15.0 
6.5 

A - .4c»iod, 
mole /1 . 

0.000010 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000001 
.000000 

- .000002 

Calcd. value 
19.53 
13.07 
6.51 

simply guessing the values, it being assumed that 
kz < ki < k\. 

Our experience is that the iterative procedure 
will not converge unless the estimate °&3 is within 
100% of the actual value of kz, whereas °&2 and °ki 
can be at variance more than 300% from the 
actual values of k\ and ki. Furthermore, we ob­
served that in duplicate runs, reproducible values 
for kz will result only if the reaction is carried out 
until the plot of log A vs. X approaches linearity. 
This usually occurred at about 75% completion 
of the reaction. 
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that under the conditions of the experiment, i.e. 
dielectric constant ~ 9 , the ratio of the rate con-

(2) Presented in part at the New York City Meeting of the American 
Chemical Society, September, 1960. 

(3) W. J. Svirbely and H. E. Weisberg, J. Am. Chem. Soc, 81, 237 
(1959). 
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The three step alkaline hydrolysis of 1,3,5-tricarbomethoxybenzene has been studied in dioxane-water mixtures over a 
temperature range. The three rate constants have been determined using procedures developed for the determination of 
the rate constants for a three-step consecutive-competitive second-order reaction involving a symmetrical molecule where 
there may be interaction among the reaction sites. The various thermodynamic activation values have been calculated. 
The data have been examined statistically for their significance. I t was observed that the kz/h ratio approached unity in 
the low dielectric media. The experimental observations can be explained on the basis of the formation of ion-pairs or 
aggregates. 


